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Abstract The relationship between viral load and CD4 cell count is one of the inter-
esting questions in AIDS research. Statistical models are powerful tools for clarifying
this important problem. Partially linear mixed-effects (PLME) model which accounts
for the unknown function of time effect is one of the important models for this pur-
pose. Meanwhile, the mixed-effects modeling approach is suitable for the longitudinal
data analysis. However, the complex process of data collection in clinical trials has
made it impossible to rely on one particular model to address the issues. Asymmetric
distribution, measurement error and left censoring are features commonly arisen in
longitudinal studies. It is crucial to take into account these features in the modeling
process to achieve reliable estimation and valid conclusion. In this article, we establish
a joint model that accounts for all these features in the framework of PLMEmodels. A
Bayesian inferential procedure is proposed to estimate parameters in the joint model.
A real data example is analyzed to demonstrate the proposed modeling approach for
inference and the results are reported by comparing various scenarios-based models.
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1 Introduction

In AIDS clinical trial, it is interesting to study the relationship between viral load
(plasma HIV RNA copies per milliliter) and CD4 cell count. The goal of the highly
active antiretroviral therapy (HAART) is to suppress the viral load at very low level
and to improve the patient’s immune system (quantified by CD4 cell counts/mm3). It is
well known that the CD4 cells play an important role in eradicating and/or maintaining
the suppressed viral load. The better understanding of the interaction between viral
load and CD4 cells may help clinicians design treatment regimes in a more efficient
way.

Partially linear model (PLM), a special case of semiparametric model, has received
much attention in the statistical community (Speckman 1988;Härdle et al. 2000; Liang
and Ren 2005). PLM, as a combination of both parametric and nonparametric compo-
nents, enjoys advantages from both sides. The interpretation of the linear component
is made easier by the parametric formation while the nonparametric component allows
flexibility of modeling complex nonlinear relationships between the response variable
and independent variables. Liang et al. (2004) firstly applied the PLM to model the
relationship between viral load and CD4 cell counts in presence of a nonlinear rela-
tionship between viral load and treatment time. To account for the longitudinal nature
of clinical data, the PLM has been extended to the generalized linear mixed-effects
model framework (Liang and Ren 2005). In these models, the nonparametric compo-
nent was usually approximated by the local linear smoother, such as local polynomial
kernel, before the optimization method was applied to obtain parameter estimates.
Nevertheless, one major drawback, as many other existing statistical models share,
is that the random errors are assumed to be normally and symmetrically distributed,
which lacks robustness against departure from normality and outliers. The statistical
inference based on normal assumption may lead to misleading results (Ho and Lin
2010; Huang andDagne 2011; Huang et al. 2012; Sahu et al. 2003; Lachos et al. 2011).

Some data features are worthy of attention when one models the relationship
between viral load andCD4 cell counts. In practice,when the quantity of viral load falls
below a certain threshold, referred to as limit of detection (LOD), it is not detectable
by the device because of the low sensitivity of the current standard assay. Thus, for
computational convenience, data below LOD are usually imputed by the LOD or half
of the LOD. However, it is to be suspected that such manipulations may impact the
statistical inference eventually. Further, CD4 cell counts are generally measured with
much noise. It has been noted that ignoring measurement error in CD4 cell counts
incurs significant bias on parameter estimation (Liang and Ren 2005).

The simultaneous inference for longitudinal data with features of asymmetry, LOD
and covariate measurement errors is of interest recently (Huang and Dagne 2011;
Huang et al. 2012). Most of the work were focused on nonlinear mixed-effects models
in the presence of multiple data features (Huang and Dagne 2011; Huang et al. 2011).
However, it is not clear how asymmetry, LOD and measurement error in covariates
may interact and simultaneously impact the statistical procedure under the framework
of partially linear mixed-effects (PLME) joint model. Statistical inferences complicate
dramatically when all of these issues are present. In this article, we develop a PLME
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joint model with skew distributions to investigate the effects on inference when all of
these data features are present.

We adopt a skew-t (ST) distribution (Azzalini and Genton 2008; Azzalini and Cap-
itanio 2003; Ho and Lin 2010; Huang and Dagne 2011, 2012; Jara et al. 2008; Sahu
et al. 2003) to develop joint models for longitudinal data with features of asymmetry,
LOD and measurement error in covariates. The performance based on an ST distribu-
tion is compared with that based on a normal distribution.We employ a fully Bayesian
approach to investigate the ST-PLME joint models. It is noted that the ST distribution
reduces to the standard normal distribution when its degrees of freedom approach
infinity and its skewness parameter is zero. Therefore, the joint model built on ST
distributions can be easily reverted to other distributions such as normal distributions.
In this article, to account for many data features in longitudinal studies, we developed
a joint model with following components: (1) PLME model with ST distribution for
response process with considering left censoring due to LOD; (2) linear mixed-effects
(LME) model with ST distribution for covariate process. It is noted that the LOD
data for viral load is in the similar sense to the left-censored data in survival analysis.
Toward this end, to account for the LOD in viral load, the joint likelihood that takes
into consideration of the censoring mechanism is adopted for Bayesian analysis. We
then present a flexible and robust approach tomodel the complicated process under the
Bayesian framework. The Bayesian approach avoids the high dimensional integration
as well as complicated approximations usually adopted by a frequentist approach, thus
it is more convenient for drawing statistical inferences.

The rest of the article is organized as follows. In Sect. 2, the clinical data that moti-
vate this research are briefly described and the joint statistical models that account for
asymmetric distribution and LOD in response as well as measurement error in covari-
ate are introduced. The Bayesian inferential approach that estimates the parameters in
the joint model is presented in Sect. 3. In Sect. 4, the proposed models and inferential
method are applied to an AIDS clinical data and analysis results are presented. The
article is concluded with a discussion in Sect. 5.

2 Motivating data and joint model setup

2.1 Motivating data

The data that motivate this study are from an HIV/AIDS clinical study (ACTG 398)
(Hammer et al. 2002). This study is a randomized, double-blind, placebo-controlled,
with an extension to more than 48week study comparing four-drug class regimens for
481 patients with virologic failure. The plasma HIV-1 RNA (viral load) was designed
to be repeatedly measured in copies per milliliter at weeks 0, 2, 4, 8, 16 and every
8weeks until the last patient completed 48weeks on study. The number of viral load
measurements for each individual varies from 2 to 13. Out of total 481 patients, the
379 patients who had more than two observations were included in the data analysis.
CD4 cell counts were also measured throughout the study on a similar scheme. A
log10 transformation of viral load and standardized CD4 cell counts were used in the
analysis in order to reduce the variation of the measurements and, in turn, to stabilize
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Fig. 1 Histogram of log10 viral load (left) and standardized CD4 cell counts (right) of 379 patients from
ACTG 398 clinical trial

the estimation algorithm and to speed up convergence of the algorithm. In addition, to
avoid too small or too large estimates which may be unstable, we rescaled the original
time (in days) so that the time scale is between 0 and 1.

Figure 1 shows the distribution of repeated viral load (log10 scale) and standardized
CD4 cell count measurements for 379 patients in an ACTG 398 clinical trial study. It
is obvious that, both viral load (response) and CD4 cell counts (covariate) are highly
skewed. Thus, the normality assumption is not quite realistic for this dataset. As an
alternative, an asymmetric distribution such as skew-t (ST) distribution (Sahu et al.
2003; Arellano-Valle and Genton 2005; Azzalini and Capitanio 2003; Azzalini and
Genton 2008; Ho and Lin 2010; Jara et al. 2008) is more suitable than a symmetric
normal distribution for modeling skewed-longitudinal data. Another challenge for
analyzing longitudinal data in AIDS clinical studies is that CD4 cell counts are often
measured with substantial errors. Additionally, due to technological constraints, the
viral load are usually not measurable when the quantity falls below LOD. In ACTG
398 study, 26% of viral load measurements were below LOD which is log10(50).
Therefore, it is critical to take into account all these data features when the relationship
between viral load and CD4 cell counts is modeled in practice.

2.2 Covariate measurement error model with ST distribution

In AIDS clinical studies, the important biomarker, CD4 cell count, is usually mea-
sured with substantial errors and distribution of this variable is highly skewed. To
relax the normality assumption for the measurement errors in CD4 cell counts, we
extend a covariate (CD4) mixed-effects model by assuming an ST distribution for
the measurement error. Denote the number of subjects by n and the number of mea-
surements on the i th subject by ni ; the observed CD4 cell counts for individual i at
time ti j (i = 1, 2, . . . , n, j = 1, 2, . . . , ni ) as zi j ; the vector zi = (zi1, . . . , zini )

T .
U i and V i are ni × l design vectors, where l is the number of factors (see model
(9) for a special case), α = (α1, . . . , αl)

T and ai = (a1i , . . . , ali )T are unknown
population (fixed-effects) and individual-specific (random-effects) parameter vectors,
respectively. The mixed-effects covariate model that assumes an ST distribution for
the measurement error is as follows:

zi = U iα + V i ai + εi
(≡ z∗i + εi

)
,
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εi
iid∼ STni ,ν1

(
−J (ν1)δε1ni , σ 2

1 Ini , δε Ini
)

, (1)

where z∗i = (z∗i1, . . . , z∗ini )
T and z∗i = U iα + V i ai may be viewed as the true (but

unobservable) covariate values. The measurement error εi = (εi1, . . . , εini )
T follows

a multivariate ST distribution with degrees of freedom ν1, unknown scale parameter
σ 2
1 and skewness parameter δε , J (ν1) = (ν1/π)1/2[�((ν1 − 1)/2)/�(ν1/2)], and

1ni = (1, . . . , 1)T . We assume that ai
iid∼ Nl(0,�a), where �a is an unrestricted

covariance matrix for random-effects. Model (1) may be interpreted as an ST covari-
ate measurement error model that accounts for data skewness and incorporates the
correlation of the repeated measurements on each subject.

2.3 Partially linear mixed-effects model with ST distribution

Denote yi j as the viral load for the i th subject at time ti j (i = 1, 2, . . . , n, j =
1, 2, . . . , ni ). As mentioned previously, when the viral load in patients is below
LOD, the device is unable to detect it. This type of data is typically left censored.
Denote the observed value of yi j as (qi j , ci j ) where ci j is the censoring indicator
so that yi j is observed, i.e. yi j = qi j when ci j = 0. When ci j = 1, yi j is unob-
served, i.e. yi j ≤ d where d is the LOD. Denote the observed data from an AIDS
clinical study as � = {(zi , qi , ci ), i = 1, . . . , n} where qi = (qi1, . . . , qini )

T

and ci = (ci1, . . . , cini )
T . zi is defined accordingly in Sect. 2.2. Further, let yi =

(yi1, . . . , yini )
T , t i = (ti1, . . . , tini )

T , εi = (εi1, . . . , εini )
T . To study the relation-

ship between the viral load response and CD4 cell counts during the course of clinical
trial, we consider the following PLME model:

yi = βi z∗i + gi (ti ) + εi ,

βi = β + bi , gi (ti ) = g(ti ) + hi (ti ), (2)

where βi is the individual coefficient that quantifies the relationship between viral
load and actual CD4 cell counts for individual i ; β is the population coefficient (fixed-
effects) and bi is the random-effects variable that quantifies the departure from the
population for individual i . We assume bi is normally distributed with mean 0 and
variance σ 2

b . Both g(·) and hi (·) are unknown smoothing functions. g(·) stands for
the population smoothing curve while hi (·) represents the random-effects. Altogether,
gi (·) is the smoothing curve for individual i . The error term εi (·) and random smooth-
ing function gi (·) are zero mean stochastic processes and are independent from each
other. bi is independent of both εi (·) and gi (·). Note that in model (2), we replaced
the observed CD4 cell counts (zi ) by the unobserved but actual values (z∗i ) due to the
measurement error in CD4 cell counts. In this way, the covariate measurement error
model (1) is incorporated into the response model (2) when the parameter estimation
is carried out.

To fit model (2), we adopt a regression spline method for g(·) and hi (·). The main
idea of regression splines is to approximate g(·) and hi (·)with a linear combination of
spline basis functions�p(t) = (θ0(t), . . . , θp(t))T and�r (t) = (φ0(t), . . . , φr (t))T ,
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respectively. Therefore, we have

g p(t) ≈
p∑

k=0

ξkθk(t) = �p(t)
T ξ p

hi,r (t) ≈
r∑

k=0

χkiφk(t) = �r (t)
Tχri (3)

where ξ p = (ξ0, . . . , ξp)
T is a (p + 1)-dimensional vector of fixed-effects, χri =

(χ0i , . . . , χri )
T is a (r + 1)-dimensional vector of random-effects; the dimensional

numbers p and r can be determined by AIC or BIC. Based on the assumption of
hi (·), we can regard χri as i.i.d. realizations of a zero-mean random vector. Denote
�pi = (�p(ti1), . . . ,�p(tini ))

T and �ri = (�r (ti1), . . . ,�r (tini ))
T . Plugging (3)

into (2), we have

yi = β z∗i + bi z∗i + �piξ p + �riχri + εi (4)

Let X i = (z∗i ,�pi ), Zi = (z∗i ,�ri ), ζ = (β, ξ Tp )T and � i = (bi ,χT
ri )

T . We can
write (4) as

yi = X iζ + Zi� i + εi (5)

which is a standard LME model if we assume X i and Zi are the fixed-effects and
random-effects design matrices, respectively; ζ and � i are the fixed-effects and
random-effects parameter vectors, respectively;� i ∼ N (0,�� ) and εi ∼ N (0, Ri ).
However, in practice, the viral load yi are most likely not normally distributed. In
this case, we may assume εi ∼ STni ,ν2

(−J (ν2)δe1ni , σ
2
2 Ini , δe Ini

)
, which fol-

lows a multivariate ST distribution with degrees of freedom ν2, unknown scale
parameter σ 2

2 and skewness parameter δe, where 1ni = (1, . . . , 1)T and J (ν2) =
(ν2/π)1/2[�((ν2 − 1)/2)/�(ν2/2)]. Note that −J (ν2)δe1ni is set here in order to
have a zero mean vector for the ST distribution.

3 Bayesian analysis for the PLME joint model

The simultaneous parameter estimation based on the joint likelihood for the covariate
and response longitudinal data associated with the joint models (1) and (5) is often
computationally infeasible andmay lead to convergenceproblems, sometimes it is even
computationally prohibitive (Wu2002;Liu andWu2007).Wepropose a fullyBayesian
approach to estimate the parameters in models (1) and (5) simultaneously. Markov
chain Monte Carlo (MCMC) methods enable us to sample the posterior distribution
for each parameter and make inference subsequently.

Assume that ai ,� i , εi and εi are mutually independent. Following the properties
of ST distributions (Sahu et al. 2003), it can be shown by introducing two ni×1 random
vectors wei and wεi based on the stochastic representation for the ST distribution (see
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Huang and Dagne 2012; Sahu et al. 2003 in detail) that zi and yi can be hierarchically
formulated as follows.

zi |ai ,wεi ∼ tni ,ν1+ni

(
z∗i + δε[wεi − J (ν1 + ni )1ni ], ω1iσ

2
1 Ini

)
,

yi |zi , ai ,� i ,wei ∼ tni ,ν2+ni

(
X iζ + Zi� + δe[wei − J (ν2 + ni )1ni ], ω2iσ

2
2 Ini

)
,

ai ∼ Na(0,�a), � i ∼ N� (0,�� ),

wεi ∼ tni ,ν1(0, Ini )I (wεi > 0), wei ∼ tni ,ν2(0, Ini )I (wei > 0), (6)

where ω1i = (ν1 + wT
εi
wεi )/(ν1 + ni ), ω2i = (ν2 + wT

ei wei )/(ν2 + ni ), tni ,ν(μ, A)

denote the ni -variate t distribution with parameters μ, A and degrees of freedom ν,
I (w > 0) is an indicator function and w = |ς | with ς ∼ tni ,ν(0, Ini ). The above
representations of the hierarchical models can be easily implemented in the freely
available WinBUGS software (Lunn et al. 2000) and enable that the computational
effort for the model with an ST distribution is almost equivalent to that for the model
with a symmetric distribution.

Under Bayesian framework, we next need to specify prior distributions for all of
these parameters as follows.

α ∼ Nα(τ 1,�1), σ 2
1 ∼ IG(ω1, ω2), �a ∼ IW(�1, ρ1), δε ∼ N (0, γ1),

ζ ∼ Nζ (τ 2,�2), σ 2
2 ∼ IG(ω3, ω4), �� ∼ IW(�2, ρ2), δe ∼ N (0, γ2),

ν1 ∼ Exp(ν10)I (ν1 > 3), ν2 ∼ Exp(ν20)I (ν2 > 3) (7)

where the mutually independent Inverse Gamma (IG), Normal (N ), Exponential
(Exp) and Inverse Wishart (IW ) prior distributions are chosen to facilitate computa-
tions. The super-parametermatrices�1,�2,�1 and�2 can be assumed to be diagonal
for convenient implementation. The exponential priors for ν are truncated to lie above
3 to make variance of ST distribution well-defined.

Let f (·|·), F(·|·) and π(·) be the conditional density function, cumulative density
function (cdf) andprior density function, respectively.Let θ = {α, ζ , σ 2

1 , σ 2
2 ,�a,�� ,

ν1, ν2, δε, δe} be the collection of unknown population parameters in models (1) and
(5). If we assume that α, ζ , σ 2

1 , σ 2
2 ,�a,�� , ν1, ν2, δε and δe are independent of each

other, then π(θ) = π(α)π(ζ )π(σ 2
1 )π(σ 2

2 )π(�a)π(�� )π(ν1)π(ν2)π(δε)π(δe). We
further need to specify the models for the observed data and the prior distributions for
the unknownmodel parameters. Subsequently, based on the posterior distributions, we
can make statistical inference for the unknown parameters. When viral load response
is observable (i.e. yi j > d), the contribution of the detectable measurement yi j to
the joint likelihood is f (yi j |zi , ai ,� i ,wei ). Whereas, in the case of an undetectable
measurement yi j (i.e. yi j ≤ d), the contribution to the joint likelihood is Pr(yi j <

d|zi , ai ,� i ,wei ) = F(d|zi , ai ,� i ,wei ). As a result, the joint posterior density of
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θ based on the observed data � is

f (θ |�) ∝
{ n∏

i=1

∫ ∫ n j∏

j=1

f (yi j |zi , ai ,� i ,wei )
1−ci j F(d|zi , ai ,� i ,wei )

ci j

× f (zi |ai ,wεi ) f (wei |wei > 0) f (wεi |wεi > 0) f (ai ) f (� i )dai d� i

}
π(θ) (8)

where
∏n j

j=1 f (yi j |zi , ai ,� i ,wei )
1−ci j F(d|zi , ai ,� i ,wei )

ci j f (wei |wei > 0) is the
contribution to the full likelihood by individual i after accounting for the LOD mea-
surement for viral load response; f (zi |ai ,wεi ) f (wεi |wεi > 0) is the contributed
likelihood from the same individual on CD4 cell counts.

In general, the integrals in (8) are of high dimension and do not have closed form.
Numerical approximations to the integrals may not be sufficiently accurate. Therefore,
it is prohibitive to directly calculate the posterior distribution of θ based on the observed
data. As an alternative, theMCMC procedure can be used to sample from the posterior
distributions based on (8), using theGibbs sampler alongwith theMetropolis-Hastings
(M-H) algorithm.

4 Analysis of an AIDS clinical data

4.1 Specification of joint models

Section 2.1 has briefly described the dataset that motivated this research. Hammer
et al. (2002) has more detailed discussion on this study. As we have discussed pre-
viously, the viral load in log scale and CD4 cell counts are highly skewed (Fig. 1).
It is therefore critical to consider the skewed distribution, such as ST, in the model.
Furthermore, the covariate CD4 cell counts are measured with error and there are
substantial observations below LOD in viral load data. The joint model with the asso-
ciated inferential method accounts for multiple features in this dataset. It is our belief
that the proposed model will perform better than other models that only consider few
of these factors. Toward this end, we compare four statistical models with different
structure and specification of random errors for both response model and covariate
measurement error model.

• Model I A “naive” model with the independent multivariate normal distribution
of random errors for the response model (5) and not accounting for covariate
measurement error.

• Model II A model with the independent multivariate ST distribution of random
errors for response model (5) but not accounting for covariate measurement error.

• Model III A joint model with the independent multivariate ST distribution of
random errors for both the covariate model (1) and response model (5), but data
feature of LOD in response is not accounted for.

• Model IV A joint model with the independent multivariate ST distribution of
random errors for both the covariate model (1) and response model (5) with con-
sidering left censoring due to LOD in response.
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Note that in Models I and II, z∗i in (5) is replaced by the measured CD4 cell counts
(zi ). In Models I through III, the data below LOD are imputed by the half of LOD (25
copies/ml in ACTG 398 study). Thus, the contribution to the joint likelihood by viral
load response, i.e.

∏n j
j=1 f (yi j |zi , ai ,� i ,wei )

1−ci j F(d|zi , ai ,� i ,wei )
ci j f (wei |

wei > 0), is substituted by
∏n j

j=1 f (yi j |zi , ai ,� i ,wei ) f (wei |wei > 0) in (8).Wewill
perform the following comparisons: by comparingModels I and II, we test whether the
asymmetric ST distribution for model error will improve model fitting as compared to
normal distribution; by comparing Models II and III, we assess whether measurement
error in CD4 cell counts is necessary to account for; by comparing Models III and
IV, we evaluate whether the mechanism accounting for data below LOD in viral load
contributes to the model fitting.

Themeasurements on CD4 cell counts usually contain non-negligible errors. Ignor-
ing CD4 measurement errors leads to severely misleading results (Carroll et al. 2006).
Based on the CD4 measurements collected over time during an AIDS study, we can
model the CD4 process to partially address the measurement errors (Wu 2002). Nev-
ertheless, there are no well established models for the CD4 process. We model the
CD4 process empirically using an LME model which is flexible and works well for
complex longitudinal data. It is noted that, in the absence of theoretical rationale, we
may pick up a low order polynomial models by employing a standard model selection
technique. In our case, AIC and BIC are used to determine the best covariate mea-
surement error model (1) with a quadratic function. Thus, we model the CD4 process
as

zi j = (α1 + a1i ) + (α2 + a2i )ti j + (α3 + a3i )t
2
i j + εi j (9)

where the true CD4 cell counts z∗i j = (α1 + a1i ) + (α2 + a2i )ti j + (α3 + a3i )t2i j ,α =
(α1, α2, α3)

T is the population (fixed-effects) parameter vector, ai = (a1i , a2i , a3i )T

is an individual-specific random-effects parameter vector which is assumed to follow
normal distribution centered at zero with variance-covariance �a . In addition, we
assume that εi j independently follows ST distribution STν1

(−J (ν1)δε, σ
2
1 , δε

)
, where

ν1 is the degrees of freedom, σ 2
1 is the unknown scale parameter and δε is the skewness

parameter.
To approximate the smoothing functions of ti in model (5), we use the same basis

functions for g(·) and hi (·).We adopt the natural cubic spline baseswith the percentile-
based knots. The smoothing parameters p and r in (3) are determined by BIC. For
ACTG 398 dataset, the optimal smoothing parameters are both set at 3.

In Bayesian analysis, we need to specify the values for the hyper-parameters in
the prior distributions (7). We take weakly informative prior distribution for the
parameters in the jointmodels. In particular, (1) fixed-effects were taken to be indepen-
dent normal distributions N (0, 100) for each component of the population parameter
vectors α and ζ . (2) For the scale parameters σ 2

1 and σ 2
2 we assume a limiting non-

informative inverse gamma prior distribution, IG(0.01, 0.01) so that the distribution
hasmean 1 and variance 100. (3) The priors for the variance-covariancematrices of the
random-effects �a and �� are taken to be inverse Wishart distributions IW (�1, ρ1)

and IW (�2, ρ2) with covariance matrices �1 = diag(0.01, 0.01, 0.01),�2 =
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diag(0.01, 0.01, 0.01, 0.01) and ρ1 = ρ2 = 4, respectively. (4) For each of the skew-
ness parameters δe and δε , we choose independent normal distribution N (0, 100). (5)
The degrees of freedom parameters ν1 and ν2 follow truncated exponential distribution
with ν10 = ν20 = 0.5.

The MCMC sampler is implemented using WinBUGS software (Lunn et al. 2000).
The MCMC scheme for drawing samples from the posterior distributions of all para-
meters in the joint models is obtained by iterating between the Gibbs sampler and
the M-H algorithm. After the final MCMC samples are collected, we are able to
draw statistical inference for the unknown parameters. Specifically, we are interested
in the posterior means and quantiles. When the MCMC procedure is applied to the
actual clinical data, convergence of the generated samples is assessed using standard
tools within WinBUGS software such as trace plots and Gelman–Rubin diagnostics
(Gelman and Rubin 1992). When convergence was achieved, for each of three chains,
after an initial number of 50,000 burn-in iterations, every 50th MCMC sample is
retained from the next 50,000. Thus, we obtain 3000 samples of the targeted posterior
distributions of the unknown parameters for statistical inference. The computational
burden for fitting our models via MCMC procedure was reasonable. For example,
to fit Model IV, it took about 9h on a Window PC with Intel Core i7-2600 CPU @
6.80GHz and 16GBRAM.

The dynamic Gelman–Rubin diagnostics for representative parameters based on
Model IV is given in Fig. 2. Three curves are given: the middle and bottom curves
below the dashed horizontal line (indicating value one) represent the pooled pos-
terior variance and average within-sample variance, respectively, and the top curve
above the dashed horizontal line represents their ratio. We can see that the ratio tends
to 1, and both pooled posterior variance and average within-sample variance settle
down as the number of iterations increases, indicating that the algorithm has reached
convergence.

4.2 Comparison of modeling results

We first check the model fitting diagnostic plots (Fig. 3). By comparing the fitted
values against observed viral load values from different models, we see that Model IV
fits the data best, followed by Models III, II and I, respectively. This finding suggests
that each of the three factors: asymmetric distribution, covariate measurement error,
left censoring mechanism due to LOD in response, contributes synergistically to the
model fitting. Taking into account each of them in the modeling process improves
modeling fitting results. It is also obvious based on Q–Q plots that Models II, III and
IV that assume an ST distribution for the random errors have fewer outliers thanModel
I which assumes a normal distribution. To compare individual fitting results by each
model, we pick four patients and overlay their fitting results from fourmodels in Fig. 4.
It can be seen that Model I does not fit well each individual; Model II improves model
fitting for each individual greatly but misses a few important observations; Model III
fits the data very well except for below LOD response data; Model IV captures both
below and above LOD data very well, and thus provides the best individual fitting
among the four models.
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Fig. 2 Gelman–Rubin diagnostic plot based onModel IV (the joint model considering skewness, covariate
measurement error and left-censored response) for representative parameters from threeMarkov chains. The
middle and bottom curves below the dashed line which indicates value one, stand for the pooled posterior
variance and average within-sample variance separately, and the top curve represents their ratio

Fig. 3 Diagnostics of model fitting for the four models discussed in Sect. 4.1. Top panel fitted values versus
observed values of log10 viral load; bottom panel Q–Q plots of residuals for the four models
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Fig. 4 Individual model fitting from the four models discussed in Sect. 4.1. Model I: dotted lines; Model II:
dash-dotted lines; Model III: dashed lines; Model IV: solid lines. Viral load measurements are represented
by circles. Note that number of days considerably differ by subject and range from 25days for Subject
303–350days for Subject 15

The population posterior means (PM), standard deviation (SD) and 95% credible
interval (CI) for fixed-effects parameters based on Models I to IV along with the
scale, skewness and degrees of freedom parameters are summarized in Table 1. Based
on these results, we have the following findings: (1) the parameter estimates are all
significant (95% CIs do not include zero); (2) for the key population parameter β

that quantifies the relationship between viral load and CD4 cell counts in (2), the
posterior mean is gradually increasing from −0.54 to −0.39 with negative values for
Model I through Model IV, indicating that the relationship becomes weaker when
multiple data features are accounted for in the joint model; (3) the scale parameter σ 2

2
that quantifies the dispersion of random errors in the response model (5) is shrinking
from 0.76 in Model I, over 0.16 in Model II, 0.12 in Model III to 0.07 in Model
IV. Further, the other two factors, covariate measurement error and left censoring
in viral load response, both contribute to the attenuation of scale parameter; (4) the
estimates of the skewness parameters (δe and δε) of Models II, III and IV are all
significantly positive, confirming that the distribution of the original data is skewed
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even after transformation of viral load (see Fig. 1). Thus, it is recommended to include
a skewness parameter in the model; (5) the incorporation of measurement error in
Models III and IV impacts other parameters’ estimation (by comparison of the values
for β, σ 2

2 , δe and ν2 between Model II and Models III and IV in Table 1); (6) for
parameter estimates of CD4 covariate model (9), the estimates of the linear coefficient
α2 based onModels III and IV are slightly different, but significantly positive, whereas
the estimates of α1 and α3 are significantly negative. This finding suggests that there
is a positive linear relationship between CD4 cell counts and measurement time; (7)
there are not quite significant differences in the parameter estimates (α1, α2, α3, σ

2
1 , δε

and ν1) as well as SD and 95%CI for the covariate measurement error model between
Models III and IV. This comparison suggests that incorporating the left censoring
mechanism due to LOD in response does not influence the parameter estimation in
covariate measurement error model (9). Nevertheless, the estimated parameters in the
response model (5) are significantly impacted.

We further compute the Deviance Information Criterion (DIC) (Spiegelhalter et al.
2002) and the expected predictive deviance (EPD) for each model. EPD is defined as

EPD = E
{∑

i, j (yrep,i j − yobs,i j )2
}
where the predictive value yrep,i j is a replicate

of the observed yobs,i j and the expectation is taken over the posterior distribution of
the model parameters θ (Gelman et al. 2003). The best model has the least discrepancy
between observed values and predictive values. According to Table 1, Model IV has
the least DIC and EPD among all. The order of the preferred model based on these
two criteria is Models IV, III, II and I, respectively. The results are consistent with
the goodness of fit diagnostics shown in Fig. 3. This finding suggests that all three
components we considered here contribute to the model fitting. Therefore, it is critical
to take into account asymmetric distribution, covariate measurement error and left
censoring mechanism due to LOD in response.

Next, we look at the population estimate of the smooth function g(t) in (2). Figure 5
presents an estimating curve of g(t) against time along with 95% CI for the four
models. We observe that Models I and II show a similar shape of the curves. Estimated
curves in Models III and IV are similar to each other, but differ from ones in Models
I and II. The curves from all four models start at the similar point (around 3.5) but
diverge afterwards. The curves from Models I and II begin to decrease from day 0
almost linearly but go upwards after the mid-point (around day 280) and recover to
the value at day 0 eventually. On the other hand, the curves from Models III and IV
remain steady after the treatment initiates until around day 250 when they turn to
pick up gradually. We summarize the findings as follows: (1) the ST distribution for
random error does not show an obvious change on the shape of the population curve, in
comparison with the normal distribution (i.e., comparison of curves between Models
I and II); (2) the addition of measurement error into the joint model change the shape
of the population curves drastically (i.e. comparison of curves between Models I/II
and Model III); (3) the incorporation of data below LOD into the joint model does
not change the shape of the population curve dramatically (i.e., comparison of curves
between Model III and Model IV). The 95% CI is narrower at the beginning of the
treatment but gradually becomes wider at later stage. This is understandable by the
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Fig. 5 The population estimating curve of g(t) based on the four models discussed in Sect. 4.1. The
estimates (solid curve) along with the 95% credible intervals (dashed curves) are presented

fact that there is more dropout at the later stage than during the earlier period so that
more uncertainty evolves alongside the parameter estimates.

One advantage of the proposed joint model is that by employing the PLME model
(2), we can estimate not only the population curve g(t) but also the individual curve
gi (t) which is a combination of the population curve g(t) and individual departure
hi (t). We note that the individual curve gi (t)may not follow the pattern of the popula-
tion curve if the variation between subjects is large. Since Model IV is the best model
based on model fitting diagnostics and model selection criteria, for ease of demonstra-
tion, we present the individual curves for the four exemplary patients and these results
illustrate the principal advantage of the proposed model and developed methods in
which the estimates can be obtained for both population and individuals. For com-
parison purpose, the corresponding population estimate is also plotted in Fig. 6. We
observe that the population and individual estimates are different not only in magni-
tude but also in patterns of change. Some of the individuals, such as subject 24, follow
a similar pattern as the population curve. However, other patients show quite different
curves from the population curve. For examples, subject 274 starts from a higher point
(4 as compared to 3.5 for population estimate at day 0) and then keeps decreasing
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Fig. 6 Four exemplary individual estimating curves (gi (t), dotted curve) based on the best selected Model
IV. For comparison, the population curve (solid curve) is presented as well

all the way to the end of the trial; on the contrast, subject 357 starts from a lower
point (3 as compared to 3.5 for population estimate at day 0), but quickly picks up
and exceeds the population curve eventually; interestingly, subject 303 starts higher,
followed by a concave shape and ends up lower than the population curve. Given this
large between-subject variation, the estimated trajectories of the individual curves are
critical for individualized treatment management and care for AIDS patients.

5 Discussion

To study the complex relationship between viral load and CD4 cell count biomarkers
at both population and individual levels, we adopted a PLME joint model which is a
special case of semiparametric models. However, it is critical to consider a number of
data features that may potentially impact the discovery of this relationship. Toward this
end, we took into account three data features that commonly arise in practice under
the framework of a PLME joint model. We employed a Bayesian approach to obtain
the estimates and credible intervals for interesting parameters in the joint model. To
investigate whether each data feature influences themodeling results, we compared the
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naive model with three other models that account for various data features. As a result,
we found that themodel that accounts for all three data features performedmuch better
than those which only account for certain aspects of the data. The linear coefficient (β)

that quantifies the relationship between viral load and CD4 cell counts is significantly
negative in all models, suggesting that there is strong negative relationship between
viral load and CD4 cell counts. This finding is consistent with biological mechanism in
whichCD4 cells are one ofmajor sources to clear outHIVvirus. The comparison of the
nonparametric component estimates in the PLME joint model reveals different shape
of curves when various data features were accounted for. Since the joint model offers
a unique opportunity of both population and individual estimates, as an example, we
presented several patterns at individual level based on the best Model IV.We observed
that the individual curve may behave similarly to the population one, but on the other
hand, they may be completely different from the population estimates.

In the Bayesian analysis, it is critical to perform sensitivity analysis to see if the
posterior estimates change significantly when priors are different. Toward this end,
we carried out sensitivity analysis by employing a few sets of different values for the
hyper-parameters in (7) and re-run the MCMC sampling scheme. We observe that
the conclusions are similar to those presented in the article. Thus, we are confident
that the obtained results are robust against hyper-parameter values. In the ST-PLME
model (5), we adopted the regression spline basis to represent the unknown smoothing
function. There are a lot of alternative ways for approximating the unknown function,
such as local polynomial kernel and smoothing splines. It is interesting to compare
the modeling results based on various nonparametric methods.

To remove noises and extract the actual information forCD4 cell counts, we adopted
the low order polynomial model (9) to approximate the covariate process. Note that
the approximation is empirical and may not be true for the unknown CD4 path. There-
fore, the fitted CD4 values based on such a model are not the ‘true’ ones but rather
‘regularized’ CD4 values. Such an operation provides a way to alleviate measurement
errors in observed CD4 cell counts. Two final points related to this longitudinal study
should be briefly noted. (1) Although the data set is an unbalanced panel data, it will
presumably not make a difference in terms of the analysis conducted in this paper. (2)
Although this article is motivated by an AIDS clinical study, the basic concepts of the
developed PLME joint models and method have generally broader applications such
as cancer and infectious disease studies whenever the relevant technical specifications
are met.
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